
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 2, FEBRUARY 2019 1243

A Deep Reinforcement Learning Network for
Traffic Light Cycle Control

Xiaoyuan Liang , Xunsheng Du , Student Member, IEEE, Guiling Wang, Member, IEEE,
and Zhu Han , Fellow, IEEE

Abstract—Existing inefficient traffic light cycle control causes
numerous problems, such as long delay and waste of energy. To
improve efficiency, taking real-time traffic information as an input
and dynamically adjusting the traffic light duration accordingly
is a must. Existing works either split the traffic signal into equal
duration or only leverage limited traffic information. In this pa-
per, we study how to decide the traffic signal duration based on
the collected data from different sensors. We propose a deep rein-
forcement learning model to control the traffic light cycle. In the
model, we quantify the complex traffic scenario as states by col-
lecting traffic data and dividing the whole intersection into small
grids. The duration changes of a traffic light are the actions, which
are modeled as a high-dimension Markov decision process. The re-
ward is the cumulative waiting time difference between two cycles.
To solve the model, a convolutional neural network is employed to
map states to rewards. The proposed model incorporates multiple
optimization elements to improve the performance, such as dueling
network, target network, double Q-learning network, and priori-
tized experience replay. We evaluate our model via simulation on a
Simulation of Urban MObility simulator. Simulation results show
the efficiency of our model in controlling traffic lights.

Index Terms—Reinforcement learning, deep learning, traffic
light control, vehicular network.

I. INTRODUCTION

THE intersection management of busy or major roads is pri-
marily done through traffic lights, whose inefficient control

causes numerous problems, such as long delay of travelers and
huge waste of energy. Even worse, it may also incur vehicular
accidents [1], [2]. Existing traffic light control either deploys
fixed programs without considering real-time traffic or consid-
ering the traffic to a very limited degree [3]. The fixed programs
set the traffic signals equal time duration in every cycle, or

Manuscript received January 22, 2018; revised November 21, 2018; accepted
November 30, 2018. Date of publication January 3, 2019; date of current version
February 12, 2019. This work was supported in part by the National Science
Foundation under Grants CMMI-1844238, CNS-1717454, and CNS-1731424,
and in part by the Air Force Office of Scientific Research under Grant MURI-
18RT0073. The review of this paper was coordinated by Dr. Z. Fadlullah.
(Corresponding author: Xiaoyuan Liang.)

X. Liang and G. Wang are with the Department of Computer Science, New Jer-
sey Institute of Technology, Newark, NJ 07102 USA (e-mail:,xl367@njit.edu;
gwang@njit.edu).

X. Du is with the Department of Electrical and Computer Engineer-
ing, University of Houston, Houston, TX 77004 USA (e-mail:, xunshengdu
@gmail.com).

Z. Han is with the Department of Electrical and Computer Engineering,
University of Houston, Houston, TX 77004 USA, and also with the Department
of Computer Science and Engineering, Kyung Hee University, Seoul, South
Korea (e-mail:,zhan2@uh.edu).

Digital Object Identifier 10.1109/TVT.2018.2890726

different time duration based on historical information. Some
control programs take inputs from sensors such as underground
inductive loop detectors to detect the existence of vehicles in
front of traffic lights. However, the inputs are processed in a
very coarse way to determine the duration of green/red lights.

In some cases, existing traffic light control systems work,
though at a low efficiency. However, in many other cases, such
as a football event or a more common high traffic hour scenario,
the traffic light control systems become paralyzed. Instead, we
often witness an experienced policeman directly manages the
intersection by waving signals. In high traffic scenarios, a hu-
man operator observes the real time traffic condition in the
intersecting roads and smartly determines the duration of the
allowed passing time for each direction using his/her long-term
experience and understanding about the intersection, which is
very effective. This observation motivates us to propose a smart
intersection traffic light management system which can take
real-time traffic condition as input and learn how to manage the
intersection just like the human operator. To implement such a
system, we need ‘eyes’ to watch the real-time road condition and
‘a brain’ to process it. For the former, recent advances in sensor
and networking technology enables taking real-time traffic in-
formation as input, such as the number of vehicles, the locations
of vehicles, and their waiting time [4]. For the ‘brain’ part, rein-
forcement learning, as a type of machine learning techniques, is
a promising way to solve the problem. A reinforcement learn-
ing system’s goal is to make an action agent learn the optimal
policy through interacting with the environment to maximize
the reward, e.g., the minimum waiting time in our intersection
control scenario. It usually contains three components: states
of the environment, action space of the agent, and reward from
every action [5]. A well-known application of reinforcement
learning is AlphaGo [6], followed by AlphaGo Zero [7]. Al-
phaGo, acting as the action agent in a Go game (environment),
first observes the current image of the chessboard (state), and
takes the image as the input of a reinforcement learning model to
determine where to place the optimal next playing piece ‘stone’
(action). Its final reward is to win the game or to lose. Thus,
the reward may not be obvious during the playing process but
becomes clear when the game is over. When applying reinforce-
ment learning to the traffic light control problem, the key point
is to define the three components at an intersection and quantify
them to be computable.

Some previous works propose to dynamically control the traf-
fic lights using reinforcement learning. Some define the states

0018-9545 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9313-0538
https://orcid.org/0000-0001-7558-1266
https://orcid.org/0000-0002-6606-5822
mailto:xl367@njit.edu
mailto:gwang@njit.edu
mailto:xunshengdu@gmail.com
mailto:xunshengdu@gmail.com
mailto:zhan2@uh.edu

1244 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 2, FEBRUARY 2019

by the number of waiting vehicles or the waiting queue length
[4], [8]. But real traffic situation cannot be accurately captured
by only the number of waiting vehicles or queue length [9]. With
the popularization of vehicular networks and sensor networks,
more accurate on-road traffic information can be extracted, such
as vehicles’ speed and waiting time [10]. However, rich informa-
tion causes the number of states to increase dramatically. When
the number of states increases, the complexity in a traditional
reinforcement learning system grows exponentially. With the
rapid development of deep learning [11], deep neural networks
have been employed to deal with the large number of states,
which constitutes a deep reinforcement learning model [12]. A
few recent studies have proposed to apply deep reinforcement
learning in the traffic light control problem [13], [14]. But there
are two main limitations in existing studies: (1) the traffic sig-
nals are usually split into fixed-time intervals, and the duration
of green/red lights can only be a multiple of this fixed-length
interval, which is not efficient in many situations; (2) the traffic
signals are designed to change in a random sequence, which is
not a safe or comfortable way for drivers. In this paper, we study
the problem on how to control the traffic light signal duration
in a cycle based on the extracted information from vehicular
networks or sensor networks.

Our general idea is to mimic an experienced operator to con-
trol the signal duration in every cycle based on the informa-
tion gathered from vehicular networks. To implement such an
idea, the operation of the experienced operator is modeled as an
Markov Decision Process (MDP). The MDP is a high-dimension
model, which contains the time duration of every phase. The sys-
tem learns the control strategy based on the MDP by trial and
error in a deep reinforcement learning model. To fit a deep rein-
forcement learning model, we divide the whole intersection into
grids and build a matrix, each element of which is the vehicles’
information in the corresponding grid collected by vehicular
networks or extracted from cameras via image processing. The
matrix is defined as the states and the reward is the cumulative
waiting time difference between two cycles. In our model, a con-
volutional neural network is employed to match the states and
expected future rewards. Note that, every traffic light’s action
produced from our model affects the environment. When the
traffic flow changes dynamically, the environment becomes un-
predictable. To solve this problem, we employ a series of state-
of-the-art techniques in our model to improve the performance,
including dueling network [15], target network [12], double Q-
learning network [16], and prioritized experience replay [17].

Our contribution of the paper includes 1) We are the first to
combine dueling network, target network, double Q network
and prioritized experience replay into one framework to solve
the traffic light control problem, which can be easily applied
into other problems. 2) We propose a control system to decide
the phases’ time duration in a whole cycle instead of dividing
the time into segments. 3) Extensive experiments on a traffic
micro-simulator, Simulation of Urban MObility (SUMO) [18],
show the effectiveness and high-efficiency of our model.

The reminder of this paper is organized as follows. The liter-
ature review is presented in Section II. The model and problem
statement are introduced in Section IV. The background on rein-
forcement learning is introduced in Section III. Section V details

our reinforcement learning model in the traffic light control
system. Section VI extends the reinforcement learning model
into a deep learning model to handle the complex states in the
our system. The model is evaluated in Section VII. Finally, the
paper is concluded in Section VIII.

II. LITERATURE REVIEW

Previous works have been done to dynamically control adap-
tive traffic lights. But due to the limited computing power and
simulation tools, early studies focus on solving the problem by
fuzzy logic [19], linear programming [20], etc. In these works,
road traffic is modeled by limited information, which cannot be
applied in large scale.

With the success of deep learning in artificial intelligence,
more and more researchers use deep learning to solve trans-
portation problems. Deep learning includes supervised learning,
unsupervised learning and reinforcement learning, which have
been applied in network traffic control, such as traffic predic-
tion and routing [21]. In the traffic light control problem, since
no labels are available and the traffic scenario is influenced by
a series of actions, reinforcement learning is a good way to
solve the problem and has been applied in traffic light control
since 1990s. El-Tantawy et al. [4] summarize the methods from
1997 to 2010 that use reinforcement learning to control traf-
fic light timing. During this period, the reinforcement learning
techniques are limited to tabular Q learning and a linear function
is normally used to estimate the Q value. Due to the technique
limitation at the time in reinforcement learning, they usually
make a small-size state space, such as the number of waiting
vehicles [8], [22] and the statistics of traffic flow [23], [24]. A
signal control system is proposed in [25]. The authors use the
queue length and current light time as the state and use a linear
function to approximate the Q values. A cooperative traffic light
control system based on reinforcement learning is proposed in
[22]. The authors propose to cluster vehicles and use a linear
function to approximate the Q values; however, only the queue
information is used in the states. The complexity in a traffic road
system can not be actually presented by such limited informa-
tion. When much useful relevant information is omitted in the
limited states, it seems unable to act optimally in traffic light
control [9].

With the development of deep learning and reinforcement
learning, they are combined together as deep reinforcement
learning to estimate the Q value. Some researchers have applied
deep reinforcement learning to control the wireless communi-
cation [27], [28], but the systems cannot be directly applied in
traffic light control scenarios due to different actions and states.
We summarize the recent studies that use the value-based deep
reinforcement learning to control traffic lights in Table I. There
are three limitations in these previous studies. Firstly, most of
them test their models in a simple cross-shape intersection with
through traffic only [13], [14]. Secondly, none of the previous
works determines the traffic signal timing in a whole cycle.
Thirdly, deep reinforcement learning is a fast developing field,
where a lot of new ideas are proposed in these two years, such
as dueling deep Q network [15], but they have not been ap-
plied in traffic control. In this paper, we make the following

LIANG et al.: DEEP REINFORCEMENT LEARNING NETWORK FOR TRAFFIC LIGHT CYCLE CONTROL 1245

TABLE I
LIST OF PREVIOUS STUDIES THAT USE VALUE-BASED DEEP REINFORCEMENT LEARNING TO ADAPTIVELY CONTROL TRAFFIC SIGNALS

progress. Firstly, our intersection scenario contains multiple
phases, which corresponds a high-dimension action space in
a cycle. Secondly, our model guarantees that the traffic signal
time smoothly changes between two neighboring actions, which
is precisely defined in the MDP model. Thirdly, we employ the
state-of-the-art techniques in value-based reinforcement learn-
ing algorithms to achieve good performance.

III. BACKGROUND ON DEEP REINFORCEMENT LEARNING

Reinforcement Learning (RL) is a type of algorithms in ma-
chine learning. It interacts with the environment to learn better
actions to maximize the objective reward function in the long
run through trial and error. In reinforcement learning, an agent,
the action executor, takes an action and the environment returns
a numerical reward based on the action and the current state. A
four-tuple 〈S,A,R, T 〉 can be used to define the reinforcement
learning model:

� S : the possible state space. s is a specific state (s ∈ S);
� A : the possible action space. a is an action (a ∈ A);
� R : the reward space. rs,a denotes the reward in taking

action a at state s;
� T : the transition function space among all states, which

represents the probability of the transition from one state
to another.

In a deterministic model, T is usually omitted.
A policy is made up of a series of consequent actions. The

goal in reinforcement learning is to learn an optimal policy to
maximize the cumulative expected rewards starting from the
initial state. Generally speaking, the agent at one specific state s
takes an action a to reach state s′ and gets a reward r, which is
denoted by 〈s, a, r, s′〉. Let t denote the tth step in the policy π.
The cumulative reward in the future by taking action a at state
s is defined by Q(s, a) in the following equation,

Qπ (s, a) = E
[
rt + γrt+1 + γ2rt+2 + · · · |st = s, at = a, π

]

= E

[∞∑

k=0

γkrt+k |st = s, at = a, π

]

. (1)

In the equation, γ is the discount factor, which is usually in [0, 1).
It means the nearest rewards are worthier than the rewards in
the future.

The optimal action policy π∗ can be obtained recursively.
If the agent knows the optimal Q values of the succeeding

states, the optimal policy simply chooses the action that achieves
the highest cumulative reward. Thus, the optimal Q(s, a) is
calculated based on the optimal Q values of the succeeding
states. It can be expressed by the Bellman optimality equation
to calculate Qπ ∗(s, a),

Qπ ∗(s, a) = Es ′
[
rt + γ max

a ′
Qπ ∗(s′, a′)|s, a

]
. (2)

The intuition is that the cumulative reward is equal to the sum of
the immediate reward and optimal future reward thereafter. If the
estimated optimal future reward can be obtained, the cumulative
reward since now can be calculated. This equation can be solved
by dynamic programming, but it requires that the number of
states is finite to make the computing complexity manageable.
When the number of states becomes large, a function θ is needed
to approximate the Q value.

IV. PROBLEM STATEMENT

This paper targets on controlling the traffic lights at road in-
tersections. A traffic light at an intersection has three signals:
green, yellow and red. When there are vehicles from multiple
directions at an intersection, one traffic light may not be enough
to manage all the vehicles and multiple traffic lights need to
cooperate at a multi-direction intersection. A status is defined
as one of all the legal combinations of all traffic lights’ red and
green signals omitting the yellow signals. At an intersection, the
traffic signal guides vehicles from non-conflicting directions at
one time by changing the traffic lights’ statuses. The time du-
ration staying at one status is called one phase. The number of
phases is decided by the number of legal statuses at an inter-
section. All the phases cyclically change in a fixed sequence to
guide vehicles to pass the intersection. It is called a cycle when
the phases repeat once. The sequence of phases in a cycle is
fixed, but the duration of every phase is adaptive based on the
current traffic condition. If one phase needs to be skipped, its
duration can be set 0 second. In our problem, we dynamically
adjust the duration in every phase to deal with different traffic
situations at an intersection to minimize the delay.

Our problem is to optimize the efficiency of the intersection
usage by dynamically changing every phase’s duration of a traf-
fic light via learning from historical experiences. The duration
of a phase should be extended strategically if there are more ve-
hicles in that direction. In this paper, we build a deep Q learning
network to learn the timing strategy of every phase to optimize

1246 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 2, FEBRUARY 2019

Fig. 1. The traffic light control model in our system. The left side shows
the intersection scenario where the traffic light controller gathers road traffic
information first and it is controlled by the reinforcement learning model; the
right side shows a deep neural network to help the traffic light controller choose
an action.

the traffic management. Our network self-updates by continu-
ously receiving states and rewards from the environment. The
model is shown in Fig. 1. The left side shows the structure in a
traffic light. The traffic light first gathers road traffic information
via a vehicular network [10] or other tools, which is presented by
the dashed purple lines in the figure. The traffic light processes
the data to obtain the road traffic’s state and reward, which has
been assumed in many previous studies [9], [14], [26]. The traf-
fic light chooses an action based on the current state and reward
using a deep neural network shown in the right side. The left
side is the reinforcement learning part and the right side is the
deep learning part.

V. OUR REINFORCEMENT LEARNING MODEL

In this section, we define the three elements of our RL model:
states, actions and rewards.

A. States

We define the states based on the position and speed of ve-
hicles at an intersection. Through a vehicular network or other
tools, vehicles’ position and speed can be obtained [10]. The
traffic light can extract a virtual snapshot image of the current
intersection. The whole intersection is divided into same-size
small square-shape grids. The length of grids, c, should guaran-
tee that no two vehicles can be held in the same grid and one en-
tire vehicle can be put into a grid to reduce computation. In every
grid, the state value is a two-value vector < position, speed >
of the inside vehicle. The position dimension is a binary value,
which denotes whether there is a vehicle in the grid. If there is
a vehicle in a grid, the value in the grid is 1; otherwise, it is
0. The value in the speed dimension is an integer, denoting the
vehicle’s current speed in m/s.

Fig. 2 is an example to show how to set up the state values.
Fig. 2(a) shows a snapshot of the traffic status at a simple one-
lane four-way intersection, which is divided into square-shape
grids. The position matrix has the same size of the grids, which
is shown in Fig. 2(b). In the matrix, one cell corresponds to
one grid in Fig. 2(a). The blank cells mean no vehicle in the
corresponding grid, which are 0. The other cells with vehicles
inside are set 1.0. The value in the speed dimension is built in a
similar way. If there is a vehicle in the grid, the corresponding
value is the vehicle’s speed; otherwise, it is 0.

Fig. 2. The process to build the state matrix.

B. Actions

In our model, the actions’ space is defined by how to update
the duration of every phase in the next cycle. Considering the
system may become unstable if the duration change between
two cycles is too large, we specify a change step. In this paper,
we set it to be 5 seconds. We model the duration changes of two
phases between two neighboring cycles as a high-dimension
MDP. In the model, the traffic light changes only one phase’s
duration by 5 seconds if there is any change.

We take the intersection in Fig. 2(a) as an example. At the
intersection, there are four phases, north-south green, north-
east&south-west green, east-west green, and east-south&west-
north green. The other unmentioned directions are red by
default. The yellow signals are omitted here and will be pre-
sented later. Let a four-tuple < t1, t2, t3, t4 > denote the dura-
tion of the four phases in current cycle. The legal actions in the
next cycle is shown in Fig. 3. In the figure, one circle means
the durations of the four phases in one cycle. Note that the du-
ration change from the current cycle to the succeeding cycle
is 5 seconds. The duration of one and only one phase in the
next cycle is the current duration added or subtracted by 5 sec-
onds. After choosing the phases’ duration in the next cycle, the
current duration becomes the chosen one. The traffic light can

LIANG et al.: DEEP REINFORCEMENT LEARNING NETWORK FOR TRAFFIC LIGHT CYCLE CONTROL 1247

Fig. 3. Part of the Markov decision process in a multiple traffic lights scenario.

select an action in a similar way as the previous procedure. In
addition, we set the max duration of a phase as 60 seconds and
the minimal as 0 second.

The MDP is a flexible model. It can be applied into a more
complex intersection with more traffic lights, such as an irregular
intersection with five or six ways, which needs more phases.
When there are more phases at an intersection, they can be
added in the MDP model as a higher-dimension value. The
dimension of the circle in the MDP is equal to the number of
phases at the intersection.

The phases in a traffic light cyclically change in sequence.
Yellow signal is required between two neighboring phases to
guarantee safety, which allows running vehicles to stop before
signals become red. The yellow signal duration Tyellow is defined
by the maximum speed vmax on that road divided by the most
commonly-seen decelerating acceleration adec .

Tyellow =
vmax

adec
. (3)

It means the running vehicle needs such a length of time to
firmly stop in front of the intersection.

C. Rewards

The role of rewards is to provide feedback to a reinforcement
learning model about the performance of the previous actions.
It is important to define the reward appropriately so to correctly
guide the learning process, which accordingly helps take the
best action policy.

In our system, the main goal is to increase the efficiency of an
intersection and reduce the waiting time of vehicles. Thus, we
define the rewards as the change of the cumulative waiting time
between two neighboring cycles. Let it denote the ith observed
vehicle from the starting time to the starting time point of the tth
cycle and Nt denote the corresponding total number of vehicles
till the tth cycle. The waiting time of vehicle i till the tth cycle
is denoted by wit ,t , (1 ≤ it ≤ Nt). The reward in the tth cycle

Fig. 4. The architecture of the deep convolutional neural network to approxi-
mate the Q value.

is defined by the following equation,

rt = Wt −Wt+1, (4)

where

Wt =
Nt∑

it =1

wit ,t . (5)

It means the reward is the increment in cumulative waiting
time between before taking the action and after the action. If
the reward in the current cycle becomes larger than before, the
waiting time increases less than before. Considering the delay is
non-decreasing with time, the overall reward is always negative.
We aim to maximize the reward so to reduce the waiting time.

VI. DOUBLE DUELING DEEP Q NETWORK

In the traffic light control system in vehicular networks, the
number of states are very large, and thus it is challenging to
directly solve equation (2). In this paper we propose to use
a Convolutional Neural Network (CNN) [11] to approximate
the Q value. Combining with the state-of-the-art techniques,
the proposed whole network is called Double Dueling Deep Q
Network (3DQN).

A. Convolutional Neural Network

The architecture of the proposed CNN is shown in Fig. 4.
It is composed of three convolutional layers and several fully-
connected layers. In our system, the input is the small grids
including the vehicles’ position and speed information. The
number of grids at an intersection is 60× 60. The input data
become 60× 60× 2 with both position and speed information.
The data are first put through three convolutional layers. Each
convolutional layer includes three parts, convolution, pooling
and activation. The convolutional layer includes multiple filters.
Every filter contains a set of weights, which aggregates local
patches in the previous layer and shifts a fixed length of step
defined by the stride each time. Different filters have different
weights to generate different features in the next layer. The
convolutional operation makes the presence of a pattern more
important than the pattern’s position. The pooling layer selects
the salient values from a local patch of units to replace the whole
patch. The pooling process removes less important information
and reduces the dimensionality. The activation function is to

1248 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 2, FEBRUARY 2019

decide how a unit is activated. The most common way is to
apply a non-linear function on the output. In this paper, we
employ the leaky ReLU [29] as the activation function with the
following form (let x denote the output from a unit),

f(x) =

⎧
⎨

⎩

x, if x > 0,

βx, if x ≤ 0.
(6)

β is a small constant to avoid zero gradient in the negative
side. The leaky ReLU can converge faster than other activation
functions, such as tanh and sigmoid, and prevent the generation
of ‘dead’ neurons from regular ReLU.

In the architecture, three convolutional layers and full con-
nection layers are constructed as follows. The first convolutional
layer contains 32 filters. Each filter’s size is 4× 4 and it moves
2× 2 stride every time through the full depth of the input data.
The second convolutional layer has 64 filters. Each filter’s size
is 2× 2 and it moves 2× 2 stride every time. The size of the
output after two convolutional layers is 15× 15× 64. The third
convolutional layer has 128 filters with the size of 2× 2 and
the stride’s size is 1× 1. The third convolutional layer’s output
is a 15× 15× 128 tensor. A fully-connected layer transfers the
tensor into a 128× 1 matrix. After the fully-connected layer,
the data are split into two parts with the same size 64× 1. The
first part is then used to calculate the value and the second part
is for the advantage. The advantage of an action means how
well it can achieve by taking an action over all the other actions.
Because the number of possible actions in our system is 9 as
shown in Fig. 3, the size of the advantage is 9× 1. They are
combined again to get the Q value, which is the architecture of
the dueling Deep Q Network (DQN).

With the Q value corresponding to every action, we must
highly penalize illegal actions, which may cause accidents or
reach the max/min signal duration. The output combines the Q
value and tentative actions to force the traffic light to take a legal
action. Finally we get the Q values of every action in the output
with penalized values. The parameters in the CNN is denoted
by θ. Q(s, a) now becomes Q(s, a; θ), which is estimated under
the CNN θ. The details in the architecture are presented in the
next subsections.

B. Dueling DQN

As mentioned before, our network contains a dueling DQN
[15]. In the network, the Q value is estimated by the value
at the current state and each action’s advantage compared to
other actions. The value of a state V (s; θ) denotes the overall
expected rewards by taking probabilistic actions in the future
steps. The advantage corresponds to every action, which is de-
fined as A(s, a; θ). The Q value is the sum of the value V and
the advantage function A, which is calculated by the following
equation,

Q(s, a; θ) = V (s; θ)

+

(

A(s, a; θ)− 1
|A|

∑

a ′
A(s, a′; θ)

)

. (7)

A(s, a; θ) shows how important an action is to the value function
among all actions. If the A value of an action is positive, it means
the action shows a better performance in numerical rewards
compared to the average performance of all possible actions;
otherwise, if the value of an action is negative, it means the
action’s potential reward is less than the average. It has been
shown that the subtraction from the mean of all advantage values
can improve the stability of optimization compared to using the
advantage value directly. The dueling architecture is shown to
effectively improve the performance in reinforcement learning.

C. Target Network

To update the parameters in the neural network, a target value
is defined to help guide the update process. Let Qtarget(s, a)
denote the target Q value at the state s when taking action a. The
neural network is updated by the Mean Square Error (MSE) in
the following equation,

J =
∑

s

P (s)[Qtarget(s, a)−Q(s, a; θ)]2, (8)

where P (s) denotes the probability of state s in the training
mini-batch. The MSE can be considered as a loss function to
guide the updating process of the primary network. To provide
stable update in each iteration, a separate target network θ−, the
same architecture as the primary neural network but different
parameters, is usually employed to generate the target value.
The calculation of the target Q value is presented in the double
DQN part.

The parameters θ in the primary neural network are updated
by back propagation with (8). θ− is updated based on the θ in
the following equation,

θ− = αθ− + (1− α)θ. (9)

α is the update rate, which presents how much the newest pa-
rameters affect the components in the target network. A target
network can help mitigate the over optimistic value estimation
problem.

D. Double DQN

The target Q value is generated by the double Q-learning
algorithm [16]. In the double DQN, the target network is to
generate the target Q value and the action is generated from the
primary network. The target Q value can be expressed in the
following equation,

Qtarget(s, a) = r + γQ(s′, arg max
a ′

(Q(s′, a′; θ)), θ−). (10)

It is shown that the double DQN effectively mitigates the over
estimations and improves the performance [16].

In addition, we also employ the ε-greedy algorithm to balance
the exploration and exploitation in choosing actions. With the
increasing steps of training process, the value of ε decreases
gradually. We set a starting and ending values of ε and the
number of steps to reach the ending value. The value of ε linearly
decreases to the ending value. When ε reaches the ending value,
it keeps the value in the following procedure.

LIANG et al.: DEEP REINFORCEMENT LEARNING NETWORK FOR TRAFFIC LIGHT CYCLE CONTROL 1249

Fig. 5. The architecture of the reinforcement learning model in our system.

E. Prioritized Experience Replay

During the updating process, the gradients are updated
through the experience replay strategy. A prioritized experi-
ence replay strategy chooses samples from the memory based
on priorities, which can lead to faster learning and to better final
policy [17]. The key idea is to increase the replay probability
of the samples that have a high temporal difference error. There
are two possible methods estimating the probability of an ex-
perience in a replay, proportional and rank-based. Rank-based
prioritized experience replay can provide a more stable perfor-
mance since it is not affected by some extreme large errors.
In this system, we take the rank-based method to calculate the
priority of an experience sample. The temporal difference error
δ of an experience sample i is defined in the following equation,

δi = |Q(s, a; θ)i −Qtarget(s, a)i |. (11)

The experiences are ranked by the errors and then the priority
pi of experience i is the reciprocal of its rank. Finally, the
probability of sampling the experience i is calculated in the
following equation,

Pi =
pτ

i∑
k pτ

k

. (12)

τ presents how much prioritization is used. When τ is 0, it is
random sampling.

F. Optimization

In this paper, we optimize the neural networks by the ADAp-
tive Moment estimation (Adam) [30]. The Adam is evaluated
and compared with other back propagation optimization algo-
rithms in [31], which concludes that the Adam attains satisfac-
tory overall performance with a fast convergence and adaptive
learning rate. The Adam optimization method adaptively up-
dates the learning rate considering both first-order and second-
order moments using the stochastic gradient descent procedure.
Specifically, let θ denote the parameters in the CNN and J(θ)
denote the loss function. Adam first calculates the gradients of
the parameters,

g = ∇θJ(θ). (13)

It then respectively updates the first-order and second-order
biased moments, s and r, by the exponential moving average,

s = ρss + (1− ρs)g,

r = ρrr + (1− ρr)g, (14)

where ρs and ρr are the exponential decay rates for the first-
order and second-order moments, respectively. The first-order
and second-order biased moments are corrected using the time
step t through the following equations,

ŝ =
s

1− ρt
s

,

r̂ =
r

1− ρt
r

. (15)

Finally the parameters are updated as follows,

θ = θ + Δθ

= θ +
(
−εr

ŝ√
r̂ + δ

)
, (16)

where εr is the initial learning rate and δ is a small positive
constant to attain numerical stability.

G. Overall Architecture

Our deep learning architecture is illustrated in Fig. 5. The
current state and the tentative actions are fed to the primary
convolutional neural network to choose the most rewarding
action. The current state and action along with the next state
and received reward are stored into the memory as a four-tuple
〈s, a, r, s′〉. The data in the memory are selected by the prior-
itized experience replay to generate mini-batches and they are
used to update the primary neural network’s parameters. The tar-
get network θ− is a separate neural network to increase stability
during the learning. We use the double DQN [16] and dueling
DQN [15] to reduce the possible overestimation and improve
performance. Through this way, the approximating function can
be trained and the Q value at every state to every action can be
calculated. The optimal policy can then be obtained by choosing
the action with the max Q value.

The pseudocode of our 3DQN with prioritized experience
replay is shown in Algorithm 1. Its goal is to train a mature

1250 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 2, FEBRUARY 2019

Algorithm 1: Dueling Double Deep Q Network with Prior-
itized Experience Replay Algorithm on a Traffic Light.

Input: replay memory size M , minibatch size B, greedy ε,
pre-train steps tp, target network update rate α, discount
factor γ.
Notations:
θ: the parameters in the primary neural network.
θ−: the parameters in the target neural network.
m: the replay memory.
i: step number.
Initialize parameters θ, θ− with random values.
Initialize m to be empty and i to be zero.
Initialize s with the starting scenario at the intersection.
while there exists a state s do

Choose an action a according to the ε greedy.
Take action a and observe reward r and new state s′.
if the size of memory m > M then

Remove the oldest experiences in the memory.
end if
Add the four-tuple 〈s, a, r, s′〉 into M .
Assign s′ to s: s← s′.
i← i + 1.
if |M | > B and i > tp then

Select B samples from m based on the sampling
priorities.
Calculate the loss J :

J =
∑

s

1
B

[r + γQ(s′, arg max
a ′

(Q(s′, a′; θ)), θ−)−

Q(s, a; θ)]2.
Update θ with∇J using Adam back propagation.
Update θ− with θ:
θ− = αθ− + (1− α)θ.

Update every experience’s sampling priority
based on δ.
Update the value of ε.

end if
end while

adaptive traffic light, which can change its phases’ duration
based on different traffic scenarios. The agent first chooses ac-
tions randomly till the number of steps is over the pre-train steps
and the memory has enough samples for at least one mini-batch.
Before the training, every samples’ priorities are the same. Thus,
they are randomly selected into a mini-batch to train. After train-
ing once, the samples’ priorities change and they are selected by
different probabilities. The parameters in the neural network is
updated by the Adam back propagation [31]. The agent chooses
actions based on the ε and the action that has the max Q value.
The agent finally learns to get a high reward by reacting on
different traffic scenarios.

VII. EVALUATION

A. Evaluation Methodology and Parameters

1) Evaluation Metrics: Our model’s objective is to maxi-
mize the defined reward, which is to reduce the cumulative

Fig. 6. The intersection scenario tested in our evaluation.

delay of all vehicles. Thus, we evaluate the performance of our
model using the following two metrics: cumulative reward and
average waiting time. The cumulative reward is measured by
adding up the rewards of all cycles in every episode within one
hour period. The average waiting time is measured by dividing
the total waiting time by the number of vehicles in an episode.

2) Traffic Parameters: The evaluation is conducted in
SUMO [18], which provides real-time traffic simulation. We use
the Python APIs provided by SUMO to obtain the intersection’s
information and to send orders to change the traffic light’s tim-
ing. The intersection is composed of four perpendicular roads,
as shown in Fig. 6. Each road has three lanes. The right-most
lane allows right-turn and through traffic, the middle lane only
allows through traffic, and the left inner lane allows only left-
turn traffic. The simulated intersection is a 300 m× 300 m area.
The grid length c is 5 meters, which means the total number
of grids is 60× 60. The lane length is 150 meters. Vehicles
are 5 meters long and the minimal gap between two vehicles
is 2 meters. Vehicles arrive at the intersection following a ran-
dom process. The average vehicle arrival rate in every lane is
1/10 per second (i.e., on average, there is one vehicle arriving
every 10 seconds). Two lanes allow for through traffic, so the
flow rate of all through traffic (west-to-east, east-to-west, north-
to-south, south-to-north) is 2/10 per second (i.e., on average,
there are two vehicles every 10 seconds). Turning traffic (east-
to-south, west-to-north, south-to-west, north-to-east) is 1/10 per
second. Krauss following model [32] is used for Vehicles on the
road, which guarantees safe driving. The max speed of a vehi-
cle is 13.9 m/s (50 km/h). The max accelerating acceleration
is 1.0 m/s2 and the decelerating acceleration is 4.5 m/s2. The
duration of yellow signals Tyellow is set 4 to be seconds.

3) Model Parameters: The model is trained in iterations.
One iteration is an episode in an hour. The reward is accumulated
in an episode. The simulation results are the average of 50

LIANG et al.: DEEP REINFORCEMENT LEARNING NETWORK FOR TRAFFIC LIGHT CYCLE CONTROL 1251

TABLE II
PARAMETERS IN THE REINFORCEMENT LEARNING NETWORK

iterations. The development environment is built on the top of
Tensorflow [33]. The parameters in the deep learning network
are shown in Table II.

4) Comparison Study: The performance of our system is
compared with three strategies: The first one is the simplest set-
ting: the traffic light’s duration is fixed. We set it to be 30 seconds
and 40 seconds for every phase. The second one is a conven-
tional method called Adaptive Traffic Signal Control (ATSC)
[20], which set the traffic lights with fixed-time signals. The
third one is a state-of-the-art method, Deep Q Network (DQN)
[13]. In ATSC, the authors propose a Webster’s method to esti-
mate the optimal light time duration based on the most recent
cycles’ saturation. In DQN, the authors propose to use rein-
forcement learning with an auto-encoder. They use the queue
length as the state to control traffic lights. The authors show
that one single Q network can learn good control strategy in a
two-phase intersection. Regarding to our own framework, we
also conduct the ablation studies with different reinforcement
learning architectures and different parameters to present our
model’s good performance.

B. Experimental Results

1) Cumulative Reward: The cumulative reward in every
episode is first evaluated under the same traffic flow rate from
every lane. We make all strategies have the same rewards as
our work. Note that we aim to maximize the the rewards, which
is to minimize the cumulative waiting time, represented as a
negative number. The simulation results are shown in Fig. 7.
From this figure, we can see that our 3DQN outperforms the
other strategies. Specifically, the cumulative reward in 3DQN
is greater than −50000 (note that the reward is negative since
the vehicles’ delay is positive) while that in the two fixed-time
strategies is less than −6000. The fixed-time traffic signals al-
ways obtains a low reward even after more iterations while our
model can learn to achieve a higher reward with more iterations.
This is because the fixed-time traffic signals do not change the
signals’ time under different traffic scenarios. DQN’s perfor-
mance is very unstable, which cannot accurately capture the
whole information in a complex intersection by a deep neural

Fig. 7. The cumulative reward during all the training episodes.

Fig. 8. The average waiting time during all the training episodes.

network with the queue length only. Because the normal traffic
scenario is much more complex than a simple 2-phase inter-
section, the traffic information represented by queue length is
inaccurate, which makes DQN choose false actions when two
traffic scenarios are different but the queue length is the same.
In addition, one network in DQN is easy to overfit the training
data. ATSC only chooses the phases’ time duration based on
several previous cycles, which is inaccurate to predict the future
traffic scenarios. In 3DQN, the signals’ time changes to achieve
the best expected rewards, which learns a more general strat-
egy to handle different traffic states. When the training process
iterates over 1000 times, the cumulative rewards become more
stable than previous iterations. It means 3DQN has learnt how
to handle different traffic scenarios to get the most rewards after
1000 iterations.

2) Average Waiting Time: We calculate the average waiting
time of vehicles in every episode, which is shown in Fig. 8. From
this figure, we can see that 3DQN outperforms the other four
strategies. Specifically, the average waiting time in the fixed-
time signals is always over 35 seconds. Our model can learn to
reduce the waiting time to about 26 seconds after 1200 iterations
from over 35 seconds, which is at least 25.7% less than the
fixed-time strategies. ATSC can get better performance than the
fixed-time strategy, but it only uses several most recent cycles’
information, which cannot well represent future traffic. DQN’s
performance is very unstable, which means one neural network
with the queue length cannot accurately capture the real traffic

1252 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 2, FEBRUARY 2019

Fig. 9. The cumulative reward during all the training episodes in different
network architecture.

information. The results show that our model can obtain the
most stable and best performance in vehicles’ average waiting
time among all the methods.

3) Ablation Studies: In this part, we evaluate our model by
comparing to others with different parameters and different ar-
chitectures. In our model, we use a series of techniques to im-
prove the performance of deep Q networks. For comparison,
we remove one of these techniques each time to see how every
technique influences the performance. The techniques include
double network, dueling network and prioritized experience re-
play. The reward changes in all methods are shown in Fig. 9. We
can see that our model can learn fastest among the four models.
It means our model reaches the best policy faster than others.
Specifically, even there is some fluctuation in the first 400 it-
erations, our model still outperforms the other three after 500
iterations. Our model can achieve greater than −47000 rewards
while the others have less than −50000 rewards.

4) Average Waiting Time Under Rush Hours: In this part,
we evaluate our model by comparing the performance under the
rush hours. The rush hour means the traffic flows from all lanes
are not the same, which is usually seen in the real world. During
the rush hours, the traffic flow rate from one direction doubles,
and the traffic flow rates in the other lanes keep the same as
normal hours. Specifically, in our experiments, the arrival rate
of vehicles on the lanes from the west to east becomes 2/10
per second and the arrival rates of vehicles on the other lanes
are still 1/10 per second. The experimental results are shown
in Fig. 10. From the figure, we can see that the best policy
becomes harder to be learnt than the previous scenario. This
is because the traffic scenario becomes more complex, which
contains more uncertain factors. But after trial and error, our
model can still learn a good policy to reduce the average waiting
time. Specifically, the average waiting time in 3DQN is about
33 seconds after 1000 iterations while the average waiting time
in the other two fixed-time methods is over 45 seconds. Our
model reduces about 26.7% of the average waiting than the
fixed-time methods. ATSC can achieve better results than one
fixed-time method and worse than the other because the optimal
phases’ time duration in the most recent cycles does not work in
the future traffic considering the traffic scenario becomes very
complex. DQN’s performance becomes more unstable than that

Fig. 10. The average waiting time in all the training episodes during the rush
hours with unbalanced traffic from all lanes.

in the previous scenario. In summary, 3DQN can achieve the
best performance under the rush hours.

VIII. CONCLUSION

In this paper, we propose to solve the traffic light cycle con-
trol problem using a deep reinforcement learning model. The
traffic information can be gathered from vehicular networks or
sensors and used as the input of our model. The states are two-
dimension values with vehicles’ position and speed information.
The actions are modeled as a Markov decision process and the
rewards are the cumulative waiting time difference between two
cycles. To handle the complex traffic scenario in our problem,
we propose a double dueling deep Q network (3DQN) with pri-
oritized experience replay. The model can learn a good policy
under both rush hours and normal traffic flow. It can reduce the
average waiting timing by over 20% from the start of the train-
ing. The proposed model also outperforms other comparison
peers in learning speed and other metrics.

REFERENCES

[1] S. S. Mousavi, M. Schukat, P. Corcoran, and E. Howley, “Traffic light
control using deep policy-gradient and value-function based reinforcement
learning,” IET Intell. Transp. Syst., vol. 11, no. 7, pp. 417–423, Sep.
2017.

[2] X. Liang, T. Yan, J. Lee, and G. Wang, “A distributed intersection manage-
ment protocol for safety, efficiency, and driver’s comfort,” IEEE Internet
Things J., vol. 5, no. 3, pp. 1924–1935, Jun. 2018.

[3] N. Casas, “Deep deterministic policy gradient for urban traffic light con-
trol,” unpublished paper, 2017. [Online]. Available: https://arxiv.org/abs/
1703.09035v1

[4] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad, “Design of reinforce-
ment learning parameters for seamless application of adaptive traffic sig-
nal control,” J. Intell. Transp. Syst., vol. 18, no. 3, pp. 227–245, Jul.
2014.

[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
vol. 1, no. 1. Cambridge, MA, USA: MIT Press, Mar. 1998.

[6] D. Silver et al., “Mastering the game of go with deep neural net-
works and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, Jan.
2016.

[7] D. Silver et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, pp. 354–359, Oct. 2017.

[8] M. Abdoos, N. Mozayani, and A. L. Bazzan, “Holonic multi-agent system
for traffic signals control,” Eng. Appl. Artif. Intell., vol. 26, no. 5, pp. 1575–
1587, May/Jun. 2013.

https://arxiv.org/abs/1703.09035v1
https://arxiv.org/abs/1703.09035v1

LIANG et al.: DEEP REINFORCEMENT LEARNING NETWORK FOR TRAFFIC LIGHT CYCLE CONTROL 1253

[9] W. Genders and S. Razavi, “Using a deep reinforcement learning agent
for traffic signal control,” unpublished paper, 2016. [Online]. Available:
https://arxiv.org/abs/1611.01142

[10] H. Hartenstein and L. Laberteaux, “A tutorial survey on vehicular ad
hoc networks,” IEEE Commun. Mag., vol. 46, no. 6, pp. 164–171, Jun.
2008.

[11] X. Liang and G. Wang, “A convolutional neural network for transportation
mode detection based on smartphone platform,” in Proc. IEEE 14th Int.
Conf. Mobile Ad Hoc Sensor Syst., Oct. 2017, pp. 338–342.

[12] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[13] L. Li, Y. Lv, and F.-Y. Wang, “Traffic signal timing via deep reinforcement
learning,” IEEE/CAA J. Automatica Sinica, vol. 3, no. 3, pp. 247–254,
Jul. 2016.

[14] E. van der Pol, “Deep reinforcement learning for coordination in traf-
fic light control,” Master’s thesis, Dept. Artif. Intell., Univ. Amsterdam,
Amsterdam, The Netherlands, Aug. 2016.

[15] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de
Freitas, “Dueling network architectures for deep reinforcement learning,”
in Proc. 33rd Int. Conf. Int. Conf. Mach. Learn., 2016, pp. 1995–2003.

[16] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proc. 13th AAAI Conf. Artif. Intell., Feb. 2016,
pp. 2094–2100.

[17] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” in Proc. 4th Int. Conf. Learn. Representations, May 2016.

[18] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent develop-
ment and applications of sumo-simulation of urban mobility,” Int. J. Adv.
Syst. Meas., vol. 5, no. 3/4, pp. 128–138, Dec. 2012.

[19] S. Chiu and S. Chand, “Adaptive traffic signal control using fuzzy logic,”
in Proc. 1st IEEE Regional Conf. Aerosp. Control Syst., Apr. 1993,
pp. 1371–1376.

[20] K. Pandit, D. Ghosal, H. M. Zhang, and C.-N. Chuah, “Adaptive traffic
signal control with vehicular ad hoc networks,” IEEE Trans. Veh. Technol.,
vol. 62, no. 4, pp. 1459–1471, May 2013.

[21] Z. Fadlullah et al., “State-of-the-art deep learning: Evolving machine
intelligence toward tomorrow’s intelligent network traffic control sys-
tems,” IEEE Commun. Surveys Tut., vol. 19, no. 4, pp. 2432–2455, May
2017.

[22] W. Liu, G. Qin, Y. He, and F. Jiang, “Distributed cooperative reinforcement
learning-based traffic signal control that integrates v2x networks’ dynamic
clustering,” IEEE Trans. Veh. Technol., vol. 66, no. 10, pp. 8667–8681,
Oct. 2017.

[23] I. Arel, C. Liu, T. Urbanik, and A. Kohls, “Reinforcement learning-based
multi-agent system for network traffic signal control,” IET Intell. Transp.
Syst., vol. 4, no. 2, pp. 128–135, Jun. 2010.

[24] P. Balaji, X. German, and D. Srinivasan, “Urban traffic signal control
using reinforcement learning agents,” IET Intell. Transp. Syst., vol. 4,
no. 3, pp. 177–188, Sep. 2010.

[25] L. Prashanth and S. Bhatnagar, “Threshold tuning using stochastic opti-
mization for graded signal control,” IEEE Trans. Veh. Technol., vol. 61,
no. 9, pp. 3865–3880, Nov. 2012.

[26] J. Gao, Y. Shen, J. Liu, M. Ito, and N. Shiratori, “Adaptive traffic sig-
nal control: Deep reinforcement learning algorithm with experience re-
play and target network,” unpublished paper, 2017. [Online]. Available:
https://arxiv.org/abs/1705.02755

[27] L. Zhu, Y. He, F. R. Yu, B. Ning, T. Tang, and N. Zhao, “Communication-
based train control system performance optimization using deep reinforce-
ment learning,” IEEE Trans. Veh. Technol., vol. 66, no. 12, pp. 10705–
10717, Dec. 2017.

[28] F. Tang, et al., “On removing routing protocol from future wireless net-
works: A real-time deep learning approach for intelligent traffic control,”
IEEE Wireless Commun., vol. 25, no. 1, pp. 154–160, Feb. 2018.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Sur-
passing human-level performance on ImageNet classification,” in Proc.
IEEE Int. Conf. Comput. Vision, Dec. 2015, pp. 1026–1034.

[30] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
Proc. 3rd Int. Conf. Learn. Representations, May 2015.

[31] S. Ruder, “An overview of gradient descent optimization algo-
rithms,” unpublished paper, 2016. [Online]. Available: https://arxiv.org/
abs/1609.04747v1

[32] S. Krauß, “Towards a unified view of microscopic traffic flow theories,”
IFAC Transp. Syst., vol. 30, no. 8, pp. 901–905, Jun. 1997.

[33] M. Abadi et al., “TensorFlow: Large-scale machine learning on heteroge-
neous distributed systems,” in Proc. 12th USENIX Conf. Oper. Syst. Des.
Implementation, Nov. 2016, pp. 265–283.

Xiaoyuan Liang received the B.S. degree in com-
puter science and technology from Harbin Institute
of Technology, Harbin, China, in June 2013. He is
currently working toward the Ph.D. degree at the
Computer Science Department, New Jersey Institute
of Technology, Newark, NJ, USA. His research inter-
ests include deep learning, data mining, and vehicular
networks.

Xunsheng Du (S’17) received the B.S. degree from
Huazhong University of Science and Technology,
Wuhan, China, in June 2015. He is currently work-
ing toward the Ph.D. degree in electronic and com-
puter engineering at the University of Houston, Hous-
ton, TX, USA. He has been a Reviewer for IEEE
SIGNAL PROCESSING MAGAZINE, IEEE International
Conference on Communications, IEEE Special issue
on Artificial Intelligence and Machine Learning for
Networking and Communications (AI4NET), IEEE
Transactions on Network Science and Engineering

(TNSE), and IEEE INTERNET OF THINGS JOURNAL. His research interests in-
clude wireless communication, vehicular networks, image processing, deep
learning, and reinforcement learning.

Guiling Wang received the B.S. degree in software
from Nankai University, Tianjin, China, and the Ph.D.
degree in computer science and engineering and a
minor in statistics from The Pennsylvania State Uni-
versity, State College, PA, USA, in May 2006. She
is currently a Professor with the Yingwu College of
Computing Sciences. She also holds a joint appoint-
ment at the Martin Tuchman School of Management.
She joined New Jersey Institute of Technology in July
2006 as an Assistant Professor and was promoted to
an Associate Professor with tenure in June 2011. She

was promoted to a Full Professor in June 2016 in her 30s. Her research interests
include deep learning applications, blockchain technologies, intelligent trans-
portation, and mobile computing.

Zhu Han (S’01–M’04–SM’09–F’14) received the
B.S. degree in electronic engineering from Tsinghua
University, Beijing, China, in 1997, and the M.S. and
Ph.D. degrees in electrical and computer engineering
from the University of Maryland, College Park, MD,
USA, in 1999 and 2003, respectively. From 2000 to
2002, he was an R&D Engineer with JDSU, Ger-
mantown, MD, USA. From 2003 to 2006, he was a
Research Associate with the University of Maryland.
From 2006 to 2008, he was an Assistant Professor
with Boise State University, Boise, ID, USA. His re-

search interests include wireless resource allocation and management, wireless
communications and networking, game theory, big data analysis, security, and
smart grid. He is the recipient of an NSF Career Award in 2010, the Fred W.
Ellersick Prize of the IEEE Communication Society in 2011, the EURASIP
Best Paper Award for the Journal on Advances in Signal Processing in 2015,
IEEE Leonard G. Abraham Prize in the field of Communications Systems (Best
Paper Award in IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS) in
2016, and several Best Paper Awards in IEEE conferences. He is currently an
IEEE Communications Society Distinguished Lecturer.

https://arxiv.org/abs/1611.01142
https://arxiv.org/abs/1705.02755
https://arxiv.org/abs/1609.04747v1
https://arxiv.org/abs/1609.04747v1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

