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Rui Zhang, CUHK@SZ and NUSIntroduction

UAV/Drone Applications 
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Aerial photography Drone DeliveryInspection Precision Agriculture

Traffic offloading Mobile relay IoT Data Harvesting 



Wireless Communications for UAVs: Basic Requirement 

 Control and Non-Payload 
Communications (CNPC)
 Ensure safe, reliable, and effective 

flight operation
 Low data rate, high reliability, high 

security, low latency 

 Payload Communications
 Application specific data (e.g., 

HD/4K video, internet data)
 Much higher rate than CNPC, less 

stringent on reliability/latency 

CNPC information flows [ITUReportM.2171] 

UAV
Control 
Station

UAV communication requirement

ITU, “Characteristics of unmanned aircraft systems and spectrum requirements to 
support their safe operation in non-segregated airspace,” Tech. Rep. M.2171, Dec. 2009. 
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3GPP UAV Communication Requirement
UAV communication requirement

Data Type Data Rate Reliability Latency

Downlink 
(DL: BS to UAV)

Command 
and control

60-100 
Kbps

10−3 packet 
error rate

50 ms

Uplink 
(UL: UAV to BS)

Command 
and control

60-100 
Kbps

10−3 packet 
error rate

--

Application 
data

Up to 50 
Mbps

-- Similar to
terrestrial 
user

3GPP TR 36.777: “Technical specification group radio access network: study on 
enhanced LTE support for aerial vehicles”, Dec. 2017.
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China Mobile Requirement for Typical Payload
UAV communication requirement

UAV Application Height coverage Payload traffic 
latency

Payload data rate 
(DL/UL)

Drone delivery 100 m 500 ms 300 Kbps/200 Kbps

Drone filming 100 m 500 ms 300 Kbps/30 Mbps

Access point 500 m 500 ms 50 Mbps/50 Mbps

Infrastructure
inspection 100 m 3000 ms 300 Kbps/10 Mbps

Drone fleet show 200 m 100 ms 200 Kbps/200 Kbps

Precision
agriculture 300 m 500 ms 300 Kbps/200 Kbps

“China mobile technical report: Internet of drones (in Chinese),”
http://www.jintiankansha.me/t/AE9FsWW9tc 
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Existing Wireless Technologies for UAV Communications 
Wireless Communication Technologies for UAV 

Satellite-UAV communicationFlying ad-hoc network of UAVs 

Direct UAV-ground communication 
in unlicensed spectrum (e.g. 2.4 GHz)
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New Approach: Cellular-Connected UAV 
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Comparison of Wireless Technologies for UAV 
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Technology Advantages Disadvantages

Direct WiFi

• Simple
• Low cost

• Limited range/data rate
• Vulnerable to interference 
• Non-scalable for massive 

deployment

Satellite

• Global coverage • Costly 
• Heavy/bulky/energy

consuming equipment
• High latency

Ad-hoc network
• Robust and adaptable
• Support for high

mobility

• Low spectrum efficiency
• Intermittent connectivity
• Complex routing protocol

Cellular
network

• Almost ubiquitous
accessibility

• Cost-effective
• Superior performance 

and scalability

• Unavailable in remote areas
• Potential interference with

terrestrial communications

Wireless Communication Technologies for UAV Rui Zhang, CUHK@SZ and NUS



Future UAV Networks: An Air-Ground Integrated Architecture
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Y. Zeng, Q. Wu, and R. Zhang, “Access from the Sky: a tutorial on UAV communications for 
5G and beyond,’’ Proceedings of the IEEE, Dec. 2019 (Invited Paper) 

Wireless Communication Technologies for UAV Rui Zhang, CUHK@SZ and NUS



Focus of This Talk: Integrating UAVs into Cellular  
 Cellular-Connected UAV: UAV as new aerial user/terminal in cellular network

 UAV-Assisted Communication: UAV as new aerial communication platform 

Integrating UAVs into Cellular 
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Typical applications:
 Aerial BS/AP/relay
 IoT data harvesting 
 Wireless power transfer  
 Localization (for ground 

terminal)    

Typical applications:
 CNPC 
 Video/photo upload
 Edge computing 
 Localization (for UAV)  
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Integrating UAVs into 5G/6G: A Win-Win Technology 

 5G/6G for UAVs:
 URLLC (with <20ms latency, >99.99% reliability): more secure CNPC
 eMBB (with 20 Gbps peak rate): real-time UHD video payload for VR/AR
 mMTC/D2D: UAV swarm communications and networking 
 Cellular positioning (with cm accuracy): UAV localization/detection  
 Massive MIMO: 3D coverage, aerial-terrestrial interference mitigation  
 Edge-computing: UAV computing offloading, autonomous flight/navigation     

 UAVs for 5G/6G:
 New business opportunities by incorporating UAVs as new aerial users
 More robust and cost-effective cellular network with new aerial 

communication platforms

14

Integrating UAVs into Cellular 
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UAV Communications: What’s New over Terrestrial?
What’s new for UAV Communications?  

Y. Zeng, Q. Wu, and R. Zhang, “Access from the Sky: a tutorial on UAV communications for 
5G and beyond,’’ Proceedings of the IEEE, Dec. 2019 (Invited Paper) 
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Characteristic Opportunities Challenges

High altitude • Wide ground coverage as aerial 
BS/relay

• Require 3D cellular coverage for
aerial user

High LoS 
probability

• Strong and reliable 
communication link

• High macro-diversity
• Slow communication scheduling 

and resource allocation

• Severe aerial-terrestrial 
interference

• Susceptible to terrestrial 
jamming/eavesdropping

High 3D 
mobility

• Traffic-adaptive deployment
• QoS-aware trajectory design

• Frequent handover 
• Time-varying wireless backhaul

Size, weight, 
and power 
(SWAP) 
constraint

• Limited payload and endurance
• Energy-efficient design
• Compact and lightweight 

antenna/RF design
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Outline

Integrating UAVs/Drones into Future Wireless Networks 
 Motivations and benefits 
 What’s new over terrestrial communications? 

Two Main Challenges
 Trajectory optimization for UAV-assisted communication   
 Aerial-ground interference mitigation in cellular-connected UAV

Conclusion and Future Work     
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 Assume the probabilistic LoS Channel model
 Large-scale channel power model for LoS and NLoS conditions

 LoS probability:

 Expected channel gain: 

Exploiting UAV Mobility: How Much Can We Gain?

d2D

HU

V

𝜃𝜃

d

 UAV flies towards a ground terminal 
 Double gains to improve the channel 

quality: 
 Shorter link distance
 Less signal obstruction

𝜅𝜅 < 1: additional attenuation for NLoS

Trajectory and Communication Co-Design
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Channel gain for LoS and NLoS
LoS probability

Expected channel gain

Initial distance d2D 1000 m

UAV altitude Hu 100 m

Flying speed v 20 m/s

Path loss exponent α 2.3

Reference channel 
gain β0

-50 dB

Probabilistic LoS 
model parameters

𝑎𝑎 = 10, 𝑏𝑏 = 0.6,
𝜅𝜅 = 0.01

40 dB

23 dB

Trajectory and Communication Co-Design
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UAV-Assisted Communication: Fundamental Models

Downlink

v

u1

s1

v1
v2

s2

u2

Multi-UAV Interference Channel

Interference

S1 D1

s1
s1

Relaying

u1 u2

s

v

Multicasting

u1 u2

s1
s2

v

u1 u2

s1 s2

Uplink

v
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Trajectory and Communication Co-Design
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UAV Communication: Performance Metric
 Signal to interference-plus-noise ratio (SINR)
 Outage/coverage probability
 Communication throughput/delay
 Spectral/energy efficiency
 All dependent on UAV location/trajectory

20

    Desired signal 

Interference
 

(a) UAV as a transmitter (b) UAV as a receiver 
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Joint Trajectory-Communication Optimization: Continuous 
Time  Formulation   

𝒒𝒒(𝑡𝑡): trajectory 

𝒓𝒓(𝑡𝑡): commun. resource

 U: utility functions, e.g., communication rate, SINR, coverage probability, 
spectrum/energy efficiency

 fi: trajectory constraints, e.g., speed constraint, obstacle/collision avoidance 
 gi: communication resource constraints, e.g., power, bandwidth 
 hi: coupled constraints, e.g., maximum tolerable interference power, minimum 

SINR requirement

21
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Time vs. Path Discretization
 Path discretization: generalized time discretization with variable slot length

Time Discretization Path Discretization

Pros • Equal time slot length
• Linear state-space representation
• Incorporate maximum 

acceleration constraint easily

• Fewer variables if UAV 
hovers or flies slowly 

• No need to know T a priori

Cons • Excessively large number of time 
slots when UAV moves slowly

• Needs to know T a priori

• More variables if UAV flies 
with high/maximum speed 
most of the time

0 𝑇𝑇 = 𝑁𝑁𝛿𝛿𝑡𝑡
Time discretization: 𝑇𝑇 must known

𝛿𝛿𝑡𝑡 2𝛿𝛿𝑡𝑡

𝒒𝒒[1] 𝒒𝒒[2] 𝒒𝒒[𝑁𝑁]……

Path discretization:𝑇𝑇 can be unknown
𝒒𝒒1 ……
𝑇𝑇1 𝑇𝑇2

𝒒𝒒2 𝒒𝒒𝑀𝑀

Trajectory and Communication Co-Design

𝑇𝑇 =∑𝑇𝑇𝑚𝑚

22IEEE VTS Webinar Series, 2023 

Rui Zhang, CUHK@SZ and NUS



Discrete Time Formulation and Block Coordinate Descent

 Time or path discretization converts the problem into a discrete form
 The (discrete) joint trajectory and resource optimization problems are 

generally non-convex and difficult to solve 
 Block coordinate descent: alternately update one block of variables (say, 

trajectory) with the other (resource allocation) fixed. Monotonically converge 
to a locally optimal solution 

Optimize 𝒒𝒒[𝑛𝑛]Optimize 𝒓𝒓[𝑛𝑛]

𝑙𝑙 = 𝑙𝑙 + 1

𝒒𝒒(𝑙𝑙)[𝑛𝑛] 𝒒𝒒(𝑙𝑙+1)[𝑛𝑛]𝒓𝒓(𝑙𝑙+1)[𝑛𝑛]

Trajectory and Communication Co-Design
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Successive Convex Approximation
 Even with given resource allocation, UAV trajectory optimization is usually non-

convex, and thus difficult to solve 
 Non-concave objective functions: e.g., rate maximization
 Non-convex constraints: e.g., obstacle/collision avoidance, minimum speed

 Successive convex approximation (SCA): 
 local optimization via solving a sequence of convex problems
 converges to a KKT solution if appropriate local bounds are found

• Convex optimization problem
• Solution is feasible to the original 

non-convex problem

Non-convex optimization problem

Global concave lower bound

Trajectory and Communication Co-Design
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Successive Convex Approximation

 Communication rate maximization:

 Minimum speed constraint:

Convex 
optimization based 

on lower bounds

Find global 
concave lower 

bounds

𝑙𝑙 = 𝑙𝑙 + 1

𝐴𝐴𝑘𝑘,𝐵𝐵𝑘𝑘: poisitive coefficients depending on 𝒒𝒒(𝑙𝑙)[𝑛𝑛]

𝒒𝒒(𝑙𝑙)[𝑛𝑛] 𝒒𝒒(𝑙𝑙+1)[𝑛𝑛]

Trajectory and Communication Co-Design
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Case Studies

Multi-UAV enabled wireless network

 Energy-efficient UAV communication 

Q. Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communication design for multi-UAV 
enabled wireless networks,” IEEE Trans. Wireless Commun., Mar. 2018. . (IEEE 
Communications Society Young Author Best Paper Award , 2021)

Trajectory and Communication Co-Design

Y. Zeng and R. Zhang, “Energy-Efficient UAV Communication with Trajectory 
Optimization,” IEEE Trans. Wireless Commun., June 2017. (IEEE Marconi Prize Paper 
Award in Wireless Communications, 2020)
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Multi-UAV Enabled Wireless Network 
Multi-UAV Enabled Wireless Network

 Multi-UAV downlink communications with ground users  
 TDMA for user communication scheduling
 Problem: maximize the minimum average rate of all users via joint 

communication (scheduling, power control) and UAV trajectories optimization 
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Problem Formulation
Multi-UAV Enabled Wireless Network

28

Minimum rate requirement

UAV mobility constraint

TDMA constraints

power constraint

Initial/final location constraint

collision avoidance constraint

 Nonconvex, solved by time-discretization and block coordinate descent
IEEE VTS Webinar Series, 2023 
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Simulation Results
Multi-UAV Enabled Wireless Network

 New interference-mitigation approach: coordinated multi-UAV trajectory design 

29IEEE VTS Webinar Series, 2023 

Rui Zhang, CUHK@SZ and NUS



Simulation Results: Throughput-Delay Tradeoff

Multi-UAV Enabled Wireless Network

 Longer flight period achieves higher throughput than static UAV, but incurs 
larger user delay on average: a fundamental Throughput-Delay Tradeoff 
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UAV Energy Consumption Model
UAV Energy Model 

 Limited on-board energy: critical issue in UAV communication, for both 
UAV as user or BS/relay 

 UAV energy consumption: Propulsion energy >> Communication energy
 Empirical and Heuristic Models:

 Empirical model based on measurement results, e.g.,  
 Fuel cost modelled by L1 norm of control force
 Fuel cost proportional to the square of speed

 Analytical Model
 Closed-form model based on well-established results in aircraft literature
 Propulsion power as a function of speed and acceleration

Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless communication with rotary-wing
UAV,” IEEE Trans. Wireless Commun., Apr. 2019.

Y. Zeng and R. Zhang, "Energy-Efficient UAV Communication with Trajectory Optimization," IEEE Trans. 
Wireless Commun., June 2017. (IEEE Marconi Prize Paper Award in Wireless Communications, 2020)
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Energy Model Comparison: Straight and level flight
UAV Energy Model  

Fixed-Wing Rotary-Wing

Convexity with respect to 𝑉𝑉 Convex Non-convex

Components Induced and parasite Induced, parasite, and 
blade profile

𝑉𝑉 = 0 Infinity Finite

32

Fixed-Wing Rotary-Wing
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Energy Model with General Level Flight (Fixed-Wing)
UAV Energy Model  

Change in kinetic energyWork required to overcome air resistance

 Only depends on speed and centrifugal 
acceleration (causing heading change)

 Independent of actual location or tangential 
acceleration (causing speed change) 

 Work-energy principle interpretation

𝒂𝒂(𝑡𝑡)

𝒗𝒗(𝑡𝑡)

𝒂𝒂
⊥

(𝑡𝑡)

𝒂𝒂
||
(𝑡𝑡)

𝒂𝒂⊥𝟐𝟐 (𝑡𝑡)
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Energy-Efficient UAV Communication
Energy-Efficient UAV Communication

 UAV energy consumption (fixed-wing):

 Aggregate throughput as a function of UAV trajectory

 Energy efficiency in bits/Joule:
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Energy Efficiency Maximization
Energy-Efficient UAV Communication

 Maximize energy efficiency in bits/Joule via trajectory optimization

 Non-convex, solved by time discretization and successive convex 
approximation (SCA)

Initial/final location constraint

Min./Max. speed constraint

Initial/final velocity constraint

Max. acceleration constraint
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Simulation Results: Throughput-Energy Tradeoff 
Energy-Efficient UAV Communication

 Rate-max trajectory: stay as close as possible with the ground terminal
 Energy-min trajectory: less acute turning
 EE-max trajectory: balance the two, “8” shape trajectory
 A fundamental Throughput-Energy Tradeoff 
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UAV BS Placement: A Special Case of Trajectory Optimization
UAV Placement

37

 Minimize required number of 
UAV BSs to ensure all ground 
terminals are covered

 Core-sets based algorithm, 
optimal,  but with exponential 
complexity

 New spiral-based BS placement 
algorithm, linear complexity 

 Example with 80 terminals: 
Proposed spiral: 11 BSs
 Optimal core-sets: 11 BSs
 Benchmark strip-based: 13 

BSs

J. Lyu, Y. Zeng, R. Zhang, and T. J. Lim, "Placement Optimization of UAV-Mounted Mobile Base 
Stations", IEEE Commun. Letters, Mar. 2017. (IEEE Communications Society Heinrich Hertz Award, 2020) 
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Cellular-Connected UAV

Cellular-Connected UAV: Main Challenges 
 High altitude

 3D coverage is challenging: existing BS antennas tilted downwards
 High 3D mobility

 Frequent handovers, cell selection  
 Asymmetric downlink/uplink: ultra-reliable CNPC versus high-rate payload data  
 Strong air-ground LoS dominant channel (vs. terrestrial NLoS channels) 

 Pro: High macro-diversity gain: a UAV can connect with more ground BSs 
 Con: Severe aerial-ground interference: a UAV can cause/receive interference 

to/from more ground users/BSs 

Mainly served by antenna side-lobe 
with current LTE BS
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Aerial-Ground Interference
Cellular-Connected UAV

 Aerial-ground interference is more severe than terrestrial interference 
 Conventional terrestrial interference mitigation techniques may be ineffective 

to deal with the stronger UAV-ground interference 
40IEEE VTS Webinar Series, 2023 
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Aerial-Ground Interference Mitigation 

Aerial-Ground Interference Mitigation 

New aerial-ground interference mitigation techniques:
 Cooperate interference cancelation 
 Interference-aware trajectory design
 Simultaneous navigation and radio mapping via deep 

reinforcement learning 
Massive MIMO with pilot decontamination  
 D2D-assisted UAV swarm communications 
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Cooperate Interference Cancelation

L. Liu, S. Zhang, and R. Zhang, “Multi-beam UAV communication in cellular uplink: cooperative interference 
cancellation and sum-rate maximization,” IEEE Transactions on Wireless Communications, October 2019. 

 Cooperate interference cancelation (CIC) 
 Idle helping BSs decode/transmit interference in the UL/DL to facilitate interference 

cancelation at the co-channel BS/UAV 
 Different from conventional CoMP and NOMA  

42

W. Mei and R. Zhang, “Cooperative downlink interference transmission and cancellation for cellular-connected UAV: 
A divide-and-conquer approach,” IEEE Transactions on Communications, February 2020. 

Aerial-Ground Interference Mitigation 
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Interference-Aware Trajectory Design

43

S. Zhang and R. Zhang, “Radio map based 3D path planning for cellular-connected UAV,” IEEE Transactions on 
Wireless Communications, March 2021.  

Radio-map/SINR-map based trajectory design  
Trajectory adaptation to avoid strong 

interference with ground BS

Aerial-Ground Interference Mitigation 

S. Zhang, Y. Zeng, and R. Zhang, “Cellular-enabled UAV communication: a connectivity-constrained trajectory
optimization perspective,” IEEE Transactions on Communications, March 2019. (IEEE Communications Society Young
Author Best Paper Award, 2022)
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Aerial-Ground Interference Mitigation 

Simultaneous Navigation and Radio Mapping via Deep 
Reinforcement Learning 

44

Y. Zeng, X. Xu, S. Jin, and R. Zhang, “Simultaneous navigation and radio mapping for cellular-connected 
UAV with deep reinforcement learning,” IEEE Transactions on Wireless Communications, July 2021. 
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Massive MIMO with Pilot Decontamination 

R. Lu, Q. Wu, and R. Zhang, “Pilot decontamination for massive MIMO network with UAVs,” IEEE 
Wireless Communications Letters, November 2020. 
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Average UAV SINR distribution in the downlink 
before vs. after pilot decontamination 

UAV-induced pilot contamination in 
massive MIMO

Aerial-Ground Interference Mitigation 
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D2D-assisted UAV Swarm Communications 

46

Y. Han, L. Liu, L. Duan, and R. Zhang, “Towards reliable UAV swarm communication in D2D-enhanced 
cellular network,” IEEE Transactions on Wireless Communications, March 2021. 

 Challenges for Massive MIMO to support UAV swarm communications  
 More severe pilot contamination than single UAV  
 Insufficient spatial resolution due to small inter-UAV distance in swarm   

Aerial-Ground Interference Mitigation 
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Conclusion

 Integrating UAVs into 5G and beyond: a promising paradigm to 
embrace the new era of Internet-of-drones (IoD) 

 Cellular-Connected UAV: UAV as new aerial user/terminal

 UAV-Assisted Communication: UAV as mobile BS/relay/data collector

 Many challenges, among them two crucial ones are  
 Joint trajectory/placement and communication design
 Aerial-ground interference mitigation  

Much more to be investigated 
 safety/security issues, integration with satellite, energy 

replenishment, integrated communication and sensing, etc.     

Conclusion 
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Extensions/Future Directions 

Directions for Future Work
 UAV-BS/UE channel modelling and experimental verification
 3D network modelling and performance analysis   
 General UAV energy model and energy-efficient design  
 Security issues in UAV communications  
Massive MIMO/mmWave for UAV swarm communications 
 Low-complexity UAV trajectory/placement design  
 UAV communications with limited wireless backhaul
 UAV meets wireless power/energy harvesting/caching/edge 

computing/intelligent reflecting surface (IRS), etc. 
 UAV/LEO/Satellite integrated communication systems 
 UAV sensing and communication integrated design 
 AI for UAV communications and networking 
 UAV-5G/6G integration, standardization 
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